

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International GCSE Mathematics A (4MA0/4H) Paper 4H

Pearson Edexcel Level 1/Level 2 Certificate Mathematics A (KMA0/4H) Paper 4H

Edexcel and BTEC Qualifications

WWW. MYMathscloud.com Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of gualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful. www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UG037228 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- awrt answers which round to
- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- $\circ~$ oe or equivalent (and appropriate)
- dep dependent
- indep independent
- \circ eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

www.mymathscloud.com

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless specifically allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from Questions 9a, 15, 18a, 18b and 20, (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, shown be taken to imply a correct method.

NB. All ranges given in the mark scheme are inclusive

Question	Working	Answer	Mark	Notes
1	$35 \div (3+2)$ or $35 \div 5$ or $\frac{2}{5} \times 35$			M1 allow $\frac{3}{5} \times 35$ (=21)
	7×2	14	2	A1 NB 14 : 21 on answer line scores M1 A0 unless 14
				identified
				Total 2 marks

Question	Working	Answer	Mark	Notes
2 (a)	1 - (0.4 + 0.35 + 0.1)			M1
		0.15 oe	2	A1 Accept as a decimal, fraction or percentage
(b)	80×0.35 oe			M1
		28	2	A1 NB. $\frac{28}{80}$ oe gains M1 A0
				Total 4 marks

Question	Working	Answer	Mark	Notes
3 (a)	$\pi \times 7.6^2$ or $\pi \times 57.76$			M1
		181	2	A1 for 181 – 182
(b) (i)		7.65	1	B1 • accept 7.649
(ii)		7.55	1	B1
				Total 4 marks

						nnn	TRYMAINSCIOUD.COM
Question	Working	Answer	Mark		Notes		
4 (a)	0.15×270 oe (=40.5)			M1 M2	for 0.85×270 oe or $(1 - 0.1)$	15) × 270 oe	
	270 - "40.5"			M1 dep			
		229.50	3	A1 acce	ept 229.5		
(b)	13.50 ÷ 15 (=0.9) or 100 ÷ 15 (=6.6)			M1	M1 for $13.5 \div 3 (=4.5)$	M2 for	
					(=5%)	$13.5 \div 0.15$	
	"0.9" × 100 (=90) or "6.6" × 13.5(0)			M1 dep	M1 for 4.5×20		
		90	3	A1			
						Total 6 marks]

Question	Working	Answer	Mark	Notes
5	$360 \div 15 \ (=24) \ \mathbf{or} \ \frac{(15-2) \times 180}{15} \ (=156)$			M1
		24	2	A1
				Total 2 marks

Question	Working	Answer	Mark	Notes					
6	126 × 0.89 (=112)			M1	M1 for $126 \times 0.89 \times 1.62$				
	112.14				(=181.67)				
	165.24 ÷ 1.62 (=102)			M1	M1 for "181.67" – 165.24				
					(=16.43)				
	"112.14" - "102"			M1 dep on at least one previous M mark ; accept "102" – "112.14"	M1 for "16.43" ÷ 1.62				
		10.14	4	A1					
					Total 4 marks				

					www.n.	WMainscloud.com
Question	Working		Mark		Notes	
7	Arc centre <i>B</i> cutting <i>BA</i> and <i>BC</i>	at P and Q where		M1	for all relevant arcs (those drawn from P and Q may	
	BP = BQ and arcs drawn fr	from P and Q			fall outside guidelines)	
		correct bisector	2	A1	for angle bisector in guidelines with all necessary	
					arcs	
					Total 2 marks	

Question	Working	Answer	Mark		Notes	
8	$18.6^2 - 7.2^2$ (=294.12)			M1 for	squaring and	M1 for correct method to
				subt	otracting	find an angle and then
						correct trig ratio (or use of
						Sine rule) with a correct
						angle
	$\sqrt{294.12}$ or $\sqrt{18.6^2 - 7.2^2}$			M1 (dep	ep) for square root	M1 for isolating AC
	V 29 - .12 OI V 10.0 7.2					correctly
		17.1	3	A1 for	17.1 – 17.15	
						Total 3 marks

					WWW. T.	Mr Hainscloud.com
Question	Working	Answer	Mark		Notes	
9 (a)	eg. $5x = 17 + 6$ 7x - 2x = 23 5x = 23			M2	for correct rearrangement with <i>x</i> terms on one side and numbers on the other AND correct collection of terms on at least one side or for $5x - 23 = 0$ or $23 - 5x = 0$ M1 for $7x - 2x = 17 + 6$ oe ie correct rearrangement with <i>x</i> terms on one side and numbers on the other or $5x - 6 = 17$ or $7x = 2x + 23$	
		$4\frac{3}{5}$ oe	3	A1	Award full marks for a correct answer if at least 1 method mark awarded (allow $\frac{23}{5}$ as final answer)	
(b)	$x^2 + 2x + 8x + 16$	2		M1	for 3 correct terms out of a maximum of 4 terms or for 4 correct terms ignoring signs or for $x^2 + 10x + k$ for any non-zero value of k or for + $10x + 16$	
		$x^2 + 10x + 16$	2	A1	cao	
					Total 5 marks	

				Muninymainscioud.com
Question	Working	Answer	Mark	Notes
10	(6×5) + (10×15) + (19×25) + (15×35) or 30 + 150 + 475 + 525 or 1180			 M2 freq × all correct midpoint values stated (or evaluated) with intention to add (condone any one error) If not M2 then award M1 for all products t × f (and t is consistently within the interval, including end values) and intention to add (condone any one error)
	"1180" \div 50 or $\frac{"30"+"150"+"475"+"525"}{6+10+19+15}$			M1 (dep on at least M1)
		23.6	4	A1 Accept 24 with working (24 without working gains M0A0)
				Total 4 marks

Question	Working	Answer	Mark		Notes
11 (a)		5 , 0, -3, -4, -3 , 0 , 5	2	B2	B1 for 2 correct
(b)		correct graph	2		For the correct smooth curve B1 for at least 6 points from table plotted correctly
					provided at least B1 scored in (a)
					Total 4 marks

						www.p.	WINSHISCIOLIDI COM
Question	Working	Answer	Mark		Note	es	
12	$\frac{20}{16} (=1.25) \text{ or } \frac{20}{16} \times 14 \text{ oe } (=17.5) \text{ or}$ $\frac{AC}{20} = \frac{14}{16} \text{ oe}$			M1	or for a correct scale factor eg. $\frac{20}{16}$ or $\frac{16}{20}$ or 1.25 or 0.8 or $\frac{14}{16}$ oe or $\frac{16}{14}$ oe	M1 for $16 \div (20 - 16) = 4$	
	eg. $14 \times \frac{20}{16} - 14$			M1	for complete method	M1 for complete method	
		3.5	3	A1			
						Total 3 marks	

				Notes
Question	Working	Answer	Mark	Notes
13 (a)	$eg \frac{12}{6-0} oe \ (=\frac{1}{2} oe)$			M1 for any correct method to find gradient
	$y = "\frac{1}{2} "x - 2$ or $y = mx - 2$ or $y = "\frac{1}{2} "x + c$			M1 for " $\frac{1}{2}$ " substituted for <i>m</i> or -2 substituted for <i>c</i> in <i>y</i> =
	$y = "\frac{1}{2}"x + c$			mx + c or
	2			$y-1 = "\frac{1}{2}"(x-6)$ oe or
				$y2 = "\frac{1}{2}"(x - 0)$ oe
		$y = \frac{1}{2}x - 2$ oe	3	A1 NB Award M2A0 for a final answer of 0.5x - 2 or $L = 0.5x - 2$
Alternative	-2 = 0 + c; $1 = 6m + c$			M1 form two simultaneous equations
	1 = 6m + -2			M1 substitute for <i>c</i>
		$y = \frac{1}{2}x - 2$ oe	3	A1 NB Award M2A0 for a final answer of 0.5x - 2 or $L = 0.5x - 2$
(b)				M1 for correct substitution of $(4, -2)$ into
				$y = "\frac{1}{2}"x + c$ oe using their gradient found in (a)
		$y = \frac{1}{2}x - 4$ oe	2	A1 for $y = \frac{1}{2}x - 4$ oe follow through with their gradient
				found in (a) NB Award M1A0 for a final answer of $0.5x - 4$
				Total 5 marks
	1	1	1	

						nun m	AMRAINSCIOUS.COM
Question	Working	Answer	Mark		Notes		
14 (a)		0.000012	1	B1			
(b)	$790000 + 60000$ or $79 \times 10^4 + 6 \times 10^4$			M1	or sight of digits 85		
	or $7.9 \times 10^5 + 0.6 \times 10^5$						
		$8.5 imes 10^5$	2	A1			
					Т	otal 3 marks	

Question	Wor	king	Answer	Mark		Notes
15	eg. 12x + 8y = 28 -12x - 9y = 45	eg. 9x + 6y = 21 + 8x - 6y = 30			M1	for coefficient of <i>x</i> or <i>y</i> the same and correct operation to eliminate selected (condone any one arithmetic error in multiplication) or for correct rearrangement of one equation followed by correct substitution in the other
	y = -1 Substitution of the above into one of				A1 M1	cao dep on M1 (dep on 1st M1) for substituting to find the other variable or correct method of elimination to find second variable (as first M1)
			x = 3; y = -1	4	A1	cao Award 4 marks for correct values if at least first M1 scored
						Total 4 marks

					www.f	Nymathscioud.com
Question	Working	Answer	Mark		Notes	
16 (a)	Angle $POR = 180 - 2 \times 36$ (=108)			M1	May be seen on diagram	
	· · · · · · · · · · · · · · · · · · ·	54	2	A1		
(b)	Angle $HJK = 180 - 124$ (=56) or			M1	May be seen on diagram	
	angle $JHK = 90$					
	Angle $HKJ = 180 - 90 - 56$			M1		
	-	34	3	A1		
					Total 5 marks]

Question	Working	Answer	Mark	k Notes
17 (a)	$F = \frac{"k"}{m^2}$			M1 <i>k</i> must be a letter not a number
	$F \equiv \frac{1}{x^2}$			
	$0.8 = \frac{k}{5^2}$ or $k = 20$			M1 for substitution (implies first M1)
	5 ²			
		$F = \frac{20}{r^2}$	3	A1 Award 3 marks for $F = \frac{k}{r^2}$ and $k = 20$ stated anywhere
		x^2		x^2
				(even in (b)) unless contradicted by later work
(b)	$x^2 = \frac{"20"}{320}$ or $x = \sqrt{\frac{"20"}{320}}$			M1 ft if $k \neq 1$ for correct rearrangement
	$x = \frac{320}{320}$ or $x = \sqrt{320}$			
				NB. The only ft is for the value of k in $F = \frac{k}{x^2}$
		0.25 oe	2	A1 cao (ignore ±)
				Total 5 marks

					Notes	Taus (oud com
Question	Working	Answer	Mark		Notes	
18 (a)	$\frac{6\pm\sqrt{(-6)^2-4\times5\times-2}}{2\times5}$			M1	for correct substitution; condone one sign error ; condone missing brackets around $(-6)^2$; accept 6 and 6^2 in place of -6 and $(-6)^2$ There may be partial evaluation – if so, this must be correct	
	$\sqrt{76}$ or $\sqrt{36+40}$ or $2\sqrt{19}$ or 8.71			M1	(independent) for correct simplification of discriminant (if evaluated, at least 3sf rounded or truncated)	
		1.47, -0.272	3	A1	for -0.27 to -0.272 and 1.47 to 1.472 Award 3 marks if first M1 scored and answer correct	
	Alternative $x^{2} - \frac{6}{5}x - \frac{2}{5} = 0$ $(x - \frac{3}{5})^{2} - \frac{9}{25} - \frac{2}{5} = 0$			M1	for $(x - \frac{3}{5})^2$ oe	
	$(x - \frac{3}{5})^2 - \frac{9}{25} - \frac{2}{5} = 0$ $(x - \frac{3}{5}) = \pm \sqrt{\frac{19}{25}}$			M1	for $(x - \frac{3}{5}) = \pm \sqrt{\frac{19}{25}}$ oe	
		1.47, -0.272	3	A1	for -0.27 to -0.272 and 1.47 to 1.472 Award 3 marks if first M1 scored and answer correct	
(b)	$m^2 > 81$ or $m^2 - 81 > 0$			M1	Allow $m^2 = 81$ or $m^2 - 81 = 0$	
	$\pm \sqrt{81}$ or ± 9 or $(m+9)(m-9)$			B1		
		m > 9; $m < -9$	4	A2	A1 for <i>m</i> > 9; A1 for <i>m</i> < -9 dep on at least M1 scored	
					Total 7 marks	

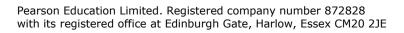
		•			WWW.TJYTTAITISCIC
Question	Working	Answer	Mark	B1	Notes on lower first branch or
19 (a)		$\frac{5}{7}$ for does not win		ы	on any branch labelled 'does not win'
		correct binary structure		B 1	4 branches needed on RHS
		all labels and values correct	3	B 1	NB. Allow decimals rounded or truncated to 3 or more
					sig figs $\left(\frac{2}{7} = 0.285714; \frac{5}{7} = 0.714285\right)$
(b)	$\frac{2}{7} \times \frac{2}{7} (=0.0813)$ $\frac{2}{7} \times \frac{5}{7} (=0.204)$ $\frac{5}{7} \times \frac{2}{7}$) or) or		M1	ft for any "correct" product; allow decimals only ft probabilities < 1 or M2 for $1 - \left("\frac{5}{7} " \right)^2$
	$\frac{2}{7} \times \frac{2}{7} + \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \text{ or}$ $\frac{2}{7} \times \frac{2}{7} $	9 <mark>5</mark> " +		M1	ft for full method
	. , ,	$\frac{24}{49}$	3	A1	ft ; allow for decimal answer, accept 0.4897959 truncated or rounded to 3 or more sig figs; only accept 0.49 if preceded by more accurate answer or M2 awarded
					Total 6 marks

							WWW. T.	WMathscioud.com
Question	Working	Answer	Mark			Notes		
20	<i>x</i> = 0.3888888			M1	for method as far	eg $100x = 38.88888$	eg 1000 <i>x</i> = 388.8888	
	10x = 3.88888				as attempting to	10x = 3.88888	10x = 3.88888	
	9x = 3.5				subtract	90x = 35	990x = 385	
	$x = \frac{3.5}{1}$					35	385	
	x =					$x = \frac{35}{90}$	$x = \frac{385}{990}$	
		$x = \frac{3.5}{9}$	2	A1	must reach $\frac{3.5}{9}$ or $\frac{3}{9}$	equivalent fraction or $18x =$	7 before reaching $\frac{7}{18}$	
							Total 2 marks	

Question	Working	Answer	Mark	Notes
21	$4\pi r^2 = 81\pi$ or $4r^2 = 81$			M1 M2 for $r = 4.5$ or
	$r = \sqrt{\frac{81\pi}{4\pi}} (=4.5)$			M1 $r = \sqrt{\frac{81\pi}{4\pi}}$ oe (may be seen in two stages)
	$\frac{4}{3} \times \pi \times "4.5"^3$			M1 ft for " <i>r</i> " dep on first M1
		382	4	A1 for 381 - 382
				Total 4 marks

				Mun My Mainscioud
Question	Working	Answer	Mark	Notes
22	Bars of height 1.2, 2, 2, 3.6, 1.4			M1 for use of frequency \div class width may be implied by 3 correct bars or 3 of $6\div5(=1.2)$, $10\div5(=2)$, $20\div10(=2)$, $36\div10(=3.6)$, $28\div20(=1.4)$
				M1 for at least 4 bars correct or all of 1.2, 2, 2, 3.6 and 1.4 (can be implied by correct heights)
		correct histogram	3	 A1 fully correct histogram SC: B2 for all bars in correct proportion but at wrong heights (unless rescaled in which case full marks are available) (eg heights of 0.6, 1, 1, 1.8, 0.7)
				Total 3 marks

							www.nymathsch
Question	Working	Answer	Mark			Notes	
23	Angle AMB identified			M1		Angle AMB identified	
	$(BM^2) = 15^2 + 6^2$			M1		$(AM^2 =) 9^2 + 15^2 + 6^2$	M2 for
	$(BM =) \sqrt{15^2 + 6^2}$ or			M1	(dep on	$(AM =)\sqrt{9^2 + 15^2 + 6^2}$ or	BM = 16.1 - 16.2
	$\sqrt{261}$ or $3\sqrt{29}$ (=16.1)				previous M1)	$\sqrt{342}$ or $3\sqrt{38}$ (=18.49)	or $AM = 18.4 - 18.5$
	$\tan AMB = \frac{9}{\sqrt{261}}$			M1		$\sin AMB = \frac{9}{"18.49"} (\times \sin 90) \ (= 0.4867)$) etc or
						$\cos AMB = \frac{"16.16"}{"18.49"} (= 0.8735)$ etc or	
						correct method to find AM and BM with	n correct substitution
						into Cosine rule and correct rearrangem	nent to make cosAMB
						the subject	
		29.1	5	A1	for 29.1 –		
						gle BAM (60.9) found then maximum of I	M0M1M1M0A0
					unless this	s is used to go onto find angle AMB	T. 4.1.5
							Total 5 marks


Question	Working	Answer	Mark	Notes
24	$2^{\frac{1}{2}^{n}} = \frac{2^{x}}{(2^{3})^{y}}$			M1 for writing 8 as 2^3 or $2^{\frac{1}{2}n}$ on lhs
	$2^{\frac{1}{2}^n} = 2^{x-3y}$			M1 for 2^{x-3y} or $\frac{1}{2}n = x - 3y$
		n = 2x - 6y	3	A1 or for $n = 2(x - 3y)$ or $n = (x - 3y) \div 0.5$
				Total 3 marks

				Notos
Question	Working	Answer	Mark	INDICS
25	$\frac{5}{2(x-3)} - \frac{x+2}{(x-3)(x-1)}$ or			M1 $x^2 - 4x + 3$ factorised correctly
	5 x+2			
	$\frac{1}{2x-6} - \frac{1}{(x-3)(x-1)}$			
	$\frac{5(x-1)}{2(x-3)(x-1)} - \frac{2(x+2)}{2(x-3)(x-1)}$			M1 a correct common denominator – may be a single
	2(x-3)(x-1) $2(x-3)(x-1)$			fraction or two fractions with correct numerators; denominator may be expanded correctly
	5x - 5 - 2x - 4			M1 correct single fraction with numerator expanded
	$\frac{5x-5-2x-4}{2(x-3)(x-1)}$			correctly; denominator may be expanded correctly
	3(x-3)			M1 correct factorisation of numerator;
	$\overline{2(x-3)(x-1)}$			denominator may be expanded correctly
		3	5	A1 Accept $\frac{3}{2x-2}$
		2(x-1)		
	Alternative $5(r^2 - 4rr + 2)$ (2r - $0/(rr + 2)$			a correct common denominator – may be a single M1 fraction or two fractions with correct numerators;
	$\frac{5(x^2-4x+3)}{(2x-6)(x^2-4x+3)} - \frac{(2x-6)(x+2)}{(2x-6)(x^2-4x+3)}$			denominator may be expanded correctly
	$5x^2 - 20x + 15 - 2x^2 - 4x + 6x + 12$			M1 correct single fraction with numerator expanded
	$(2x-6)(x^2-4x+3)$			correctly; denominator may be expanded correctly;
	$3x^2 - 18x + 27$			M1 $x^2 - 4x + 3$ factorised correctly – could occur
	(2x-6)(x-3)(x-1)			earlier
	$\frac{3(x-3)^2}{2(x-3)(x-3)(x-1)}$			M1 correct fully factorised numerator and denominator
	2(x-3)(x-3)(x-1)			denominator

				ww	W. Mymathscioud.com
	$\frac{3}{2(x-1)}$	5	A1 Accept $\frac{3}{2x-2}$		20M
				Total 3 marks	

TOTAL FOR PAPER: 100 MARKS

WWW. MYMATHSCIOUD.COM